
Metawidget White Paper

Case Study: JBoss Forge

Richard Kennard

September 2012

http://metawidget.org

1. Introduction

This white paper presents a case study of using Metawidget to provide automatic User Interface (UI)

generation for JBoss Forge. JBoss Forge is a core framework for rapid-application development in a

standards-based environment. Internally, Forge uses Metawidget to statically generate UIs for its

applications. The generated UIs are able to take full advantage of Forge's rich metamodel. This includes

metadata such as the business-specified order of fields, validation constraints, and the context of screens

(search screen, viewing screen, editing screen etc). Forge further allows developers to customize its UI

generation by leveraging Metawidget's pipeline architecture.

http://metawidget.org/

2. Organisation and Product Overview

JBoss is a division of Red Hat, a leading industry provider of enterprise middleware. Their products include

Red Hat Enterprise Linux and JBoss Application Server. They are consistently ranked one of the leading

industry vendors for providing software to the enterprise. JBoss Forge is their core framework and next-

generation shell for tooling and automation at a command-line level.

JBoss originally began development of Forge in 2010. They developed a command-line shell for creating and

modifying Java projects. The shell didn't simply manipulate text files. It possessed a deep understanding of

Java semantics, based on Eclipse JDT, and could therefore manipulate Java code with sophistication and

precision. It supported a wide variety of techniques and technologies, including: creating getter/setters for

JavaBeans; configuring POMs for Maven projects; and deploying to cloud environments such as Red Hat's

OpenShift. Forge further supported integration into IDEs (see Figure 1) and scripting for automation of

repetitive tasks. Finally, Forge had a well-defined and flexible plug-in architecture that allowed developers to

integrate their own technologies.

In December 2010 the Forge team turned their attention to UI generation. They had created a shell that could

generate much of the back-end of an application, but they knew they needed front-end generation too. The

team began searching for an approach that would allow them to statically generate the UI for an application,

whilst at the same time leveraging the existing technologies they supported. This was where Metawidget

came in.

3. Integration of Metawidget

Dan Allen, Principal Software Engineer at Red Hat, summarised the team's decision to adopt Metawidget.

“In searching for a solution [for JBoss Forge], we aimed to bridge the gap between server-side and client-

side technologies in a way that would leverage the intelligence resident in the standards-based programming

Figure 1: JBoss Forge running inside Eclipse IDE

model. In particular, we wanted a project that could integrate well with the Java EE technologies and, in

addition, Red Hat's companion extensions. Combinations included JSF and RichFaces, JPA and Hibernate,

and Bean Validation and Hibernate Validator. The UI, particularly the forms, should align with the metadata

the server-side technologies define, without intervention from the programmer. Furthermore, the alignment

should not be limited to only these standard sources”.

JBoss evaluated several approaches but “found Metawidget uniquely qualified. It gathers all the information

it can from the existing architecture, whether it be standards-based or otherwise, and uses that information to

generate consistent interface controls. With each technology introduced into the application, Metawidget's

intelligence only grows stronger, thanks to its plug-in architecture”.

Figure 2: Metawidget pipeline applies equally to runtime and static environments

Metawidget's plug-in architecture is the result of extensive research into development teams and their

practices. Years of developer interviews1, adoptions studies2 and case studies3 led to the derivation of

Metawidget's general purpose architecture for UI generation4. This architecture was designed to be extensible

in many dimensions, in order to support a wide variety of technologies and development styles.

The architecture can be summarized as a five-stage pipeline (see Figure 2). A unique property of this pipeline

is that it applies equally well to either runtime or static UI generation. Indeed, the exact same Metawidget

Inspectors and InspectionResultProcessors can be plugged-in to drive either runtime generation

for dynamic UIs, or static generation for frameworks such as JBoss Forge. All Metawidget Inspectors contain

a pluggable PropertyStyle. The Forge team developed a ForgePropertyStyle capable of reading

Forge's static metamodel and feeding it transparently into the rest of the pipeline. This allowed Forge to

leverage Metawidget's existing support for inspecting JPA annotations, Hibernate Validator annotations, Java

5 generics, and much more.

Beyond inspection, the Forge and Metawidget teams created a suite of static WidgetBuilders and

Layouts (see Figure 2). These were capable of generating static UIs for disparate technologies such as Java

Server Faces, Spring MVC and JQuery (for JBoss AeroGear). The WidgetBuilders also supported third-

party extension libaries, such as RichFaces5. The objective was to statically generate best practice UIs. It was

important Forge follow industry standards and generate pure Java EE 6 code, with no proprietary

frameworks or 'magic' behind the scenes.

Many of these static WidgetBuilders and Layouts were generic, so the Forge team contributed them

back to the Metawidget Open Source project. However the team also developed some Forge-specific

WidgetBuilders. They were keen that their generated UIs support not just the usual Create, Retrieve,

Update and Delete (CRUD) but the full gamut of entity relationships, including: one to many, many to one,

one to one and many to many. In addition, retrieval (the 'R' in CRUD) meant not just loading by id, but being

able to search and browse by filter criteria. By developing specialized WidgetBuilders with knowledge of

Forge internals, the team were able to deliver this rich functionality.

Atop this, the team utilized WidgetProcessors to refine the generated widgets based on the context of

their use. For example, whilst the 'create' and 'view' screens displayed all domain model fields, the 'search'

screen displayed only a subset of them, for use as filter criteria.

1 http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-DuplicationInUserInterfaces.pdf

2 http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-AdoptionStudies.pdf

3 http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-TelefonicaHealthPortal.pdf

4 http://metawidget.org/media/downloads/Derivation%20of%20a%20General%20Purpose%20Architecture%20for
%20Automatic%20User%20Interface%20Generation.pdf

5 http://jboss.org/richfaces

http://jboss.org/richfaces
http://metawidget.org/media/downloads/Derivation%20of%20a%20General%20Purpose%20Architecture%20for%20Automatic%20User%20Interface%20Generation.pdf
http://metawidget.org/media/downloads/Derivation%20of%20a%20General%20Purpose%20Architecture%20for%20Automatic%20User%20Interface%20Generation.pdf
http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-TelefonicaHealthPortal.pdf
http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-AdoptionStudies.pdf
http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-DuplicationInUserInterfaces.pdf

In a novel twist, the Forge team discovered they could re-purpose Metawidget's five-stage pipeline to

generate not just UI controls, but fragments of Java code as well. The pipeline is designed to be agnostic to

any particular UI technology, be it XML-based such as Java Server Faces, or programmatic such as

controlling the Swing API. This agnosticism enables the pipeline to apply equally well to outputting blocks

of Java code. The Forge team were able to reuse the exact same Inspectors and

InspectionResultProcessors that drove their page generation to drive generation of their backing

beans and UI controllers.

Finally, the team were able to leverage cutting-edge frameworks such as Bootstrap CSS 6 to give their UIs a

best-of-breed appearance (see Figures 3 and 4).

6 http://twitter.github.com/bootstrap

Figure 3: Metawidget-generated search screen

http://twitter.github.com/bootstrap

4. Conclusion

In closing, we asked the Principal Software Engineer how he would sum up the team's experiences with

Metawidget? “In summary, we found Metawidget to be an excellent solution. It's clear that a lot of work has

gone into understanding different enterprise architectures, both standard and non-standard, to ensure

Metawidget integrates well with them. The result is a project we think will be very relevant and applicable to

our enterprise customers in the future”.

Dan also had ideas for the future: “Personally, I was intrigued by the idea of plugging in less orthodox

technologies to generate UIs from novel sources, such as generating a UI from a rule engine. We have a lot

of customers using Drools [Red Hat's rule engine], and it would be great to open new possibilities for them.

This is where Red Hat's focus on interoperability, as well as choice, plays such an important role.

Metawidget both benefits from this competitive advantage and helps to propagate it.”

Figure 4: Metawidget-generated create screen

5. Resources

JBoss Forge: http://jboss.org/forge

Metawidget: http://metawidget.org

http://metawidet.org/
http://jboss.org/forge

	1. Introduction
	2. Organisation and Product Overview
	3. Integration of Metawidget
	4. Conclusion
	5. Resources

