
Separation Anxiety: stresses of developing a
modern day Separable User Interface

Richard Kennard, Ernest Edmonds and John Leaney, University of Technology, Sydney

Abstract - The evolution of User Interface (UI) tools has
generally regarded the UI as separable from the underlying
application it represents. This viewpoint leaves the UI having to
restate invariants already specified in other subsystems of an
application, and any discrepancy between the versions in the UI
and those in the subsystems leads to errors.

This paper explores a sample of real world subsystems in use
by enterprise applications today, and underscores the problem
of duplication between them and the UI. It then surveys the
prevalence of this issue within mainstream software
development.

Keywords - separable user interface, duplication.

I. INTRODUCTION
The evolution of software tools for constructing User
Interfaces (UI) has often regarded the UI as separable from
the underlying application it represents [1]. This viewpoint is
sometimes implicit, but as Edmonds observes “whilst work
on the specification of UIs has not in general addressed the
issue of separability directly, it is quite clear that the whole
enterprise is founded upon the notion of separability” [2].

In general, 'separation of concerns' [3] is a powerful
abstraction for managing complexity. By encapsulating the
implementation details of other subsystems, tools can
develop independently to a high degree of sophistication,
and “the management of design and development teams can
benefit significantly” [4].

However, a consequence of such separability is that
information such as names and types of fields, validation
constraints and actions become restated between the UI and
the other subsystems. The “separable user interface [cannot
be] ignorant of the functions of the system” [2], but the
desire to 'couple loosely' with minimal connecting
Application Programming Interfaces (APIs) [5] makes it
seem purer to resort to duplicated information between the
UI and the subsystems than to introduce numerous additional
APIs to exchange many small pieces of information.

From a theoretical point of view the UI is seen to hold a
description of the total system at a high level of abstraction:
the objects and actions of the application described at a level
that is close to the users’ understanding [6]. However, in
operation it is important to notice that this description must
refer to dynamic data values that are set or controlled by the

underlying functional code. Hence, the separable UI is left
restating invariants [7] that are in reality beyond its
responsibility. Any appearance that these values are arbitrary
and in some way useful in providing the UI greater
flexibility is an illusion. As Szekely [8] makes clear, “the
functionality defines what the program can do, and the user
interface defines how users tell the program what to do”.
The invariants are governed by the functionality, not by the
UI. As we will demonstrate, any discrepancy between the
versions in the UI and those in the subsystems will result in a
non-functional application.

This paper explores a sample of such underlying subsystems
in use by real world enterprise applications today. It
demonstrates these subsystems often have duplication within
themselves, but shows how many have evolved to eliminate
such duplication. It compares their approach to that of the UI
layer, which remains comparatively ignorant of the issue,
and gives an example of the scale of the duplication. The
paper then surveys the prevalence of the issue within
mainstream software development.

II. RELATED WORK
Whilst the separable UI is well represented in the existing
literature, the issue of duplication is largely unaddressed.
Many research projects have concerned themselves with UI
builders and model-based techniques [9,10,11,12] but, as
Jelinek and Slavik observe, “a common disadvantage [of UI
builders and model-based techniques] is the fact that the user
interface is defined explicitly and separately” and therefore
“the application and the corresponding [UI] model need to
be kept consistent” [13].

Whilst the general principle of minimizing inconsistency and
duplication across a codebase is well established [14], its
specific relevance to UIs is largely overlooked. In a
comprehensive review of the state of UI tools Myers,
Hudson and Pausch highlight a number of problems, such as
the need to learn a new language for the modelling, but
duplication is not amongst them [15].

Several researchers have at least flagged the problem. When
discussing the proportion of an application's code dedicated
to the UI, Edmonds points out “size is not the problem,
although duplicating application code within the interface

would be, of course” [2]. Researchers building end-to-end
applications, as opposed to just UI tools, also have
experiences that “do not support [the principle of] a high
degree of separation between the UI and the application”
[16] and realise that “the [back-end] requires a considerable
amount of knowledge [much of which is] similar to that
required by the [UI] modules” [17].

One approach that does successfully target duplication is
presented by Pawson in his Naked Objects thesis [18].
However, Naked Objects removes duplication not by
leveraging that in the existing subsystems, but by imposing a
stylized 'behaviourally-complete' methodology on the
architecture. This methodology dictates “all the functionality
associated with a given entity [must be] encapsulated in that
entity, rather than being provided in the form of external
functional procedures that act upon the entities” [18].

As Pawson himself concedes “most object-oriented designs,
and especially object-oriented designs for business systems,
do not match this ideal of behavioural-completeness” [18].
Rather, most systems adopt what Firesmith calls “dumb
entity objects controlled by a number of controller objects”
[19], where the term 'controller objects' would include, but
not be limited to, existing validation subsystems, workflow
subsystems, rule engines and Business Process Modelling
(BPM) languages.

As we shall sample in the next section, there are a large
number of possible application architectures and a diverse
range of subsystems from which to construct them.
Furthermore, new subsystems become popular over time.
For example, whilst business applications have been
developed for many years, recently business rules engines
have been introduced to formalize and externalize business
rules [20]. It is not that business applications cannot be
developed without rule engines - it is that they can be
developed better with one. It is important not to stifle this
ecosystem of subsystems by dictating the methodology or
software stack.

Despite the strengths of the Naked Objects approach, its
mismatch with real world business systems imposes a
significant barrier of adoption, making it unsuitable for most
business systems even though they would benefit from its
feature of removing duplication. In order to appreciate the
scale of this duplication, it is instructive to explore what
those subsystems are.

III. TYPES OF EXISTING SUBSYSTEMS
This section explores a sample of mainstream subsystems in
use by real world applications. The example subsystems are
all taken from the Java platform, being one of the dominant
enterprise platforms in use today [21].

There are a large number of possible application
architectures, and not all will use all subsystems. Some will
use different implementations from different vendors, some
will use new types of subsystems, some will use no
equivalent subsystem. The important point is that wherever a
subsystem is used the UI must be consistent with it or, as
will be discussed, the application cannot be expected to
function correctly.

A. Properties Subsystem
The JavaBean [22] specification was introduced in version
1.1 of the Java platform to enable the declaration of publicly
accessible properties. It is more a convention than a part of
the language, as it relies on methods with a particular
signature. For example, to declare a JavaBean 'Person' with
two properties 'name' and 'age', a developer would write:
public class Person {

private String mName;
private int mAge;
public String getName() {

return mName;
}
public void setName(String name) {

mName = name;
}
public int getAge() {

return mAge;
}
public void setAge(int age) {

mAge = age;
}

}

Even within the boundaries of its own convention, the
JavaBean syntax contains duplication. The methods
getName and setName must both contain the word 'Name',
and must both use a type of String. If they do not, an
application error will result. In most cases, this name and
type will further be mirrored by the private member variable
'mName'.

This verbosity and unnecessary duplication is a frequent
criticism of the JavaBean convention. In recognition of the
problem, language-level support for properties is a proposed
feature for the next iteration of the Java language [23]. In the
meantime, other languages already provide such support.
Groovy (a language which runs on the Java Virtual Machine
and has a similar syntax but different features) supports
properties [24]. In Groovy, a developer would write:
class Person {

String name;
int age;

}

There is now no duplication. Both the name and the type
only appear once for each property. Note this is quite
different from simply declaring two public member
variables, as properties have implicit methods that guard the
setting and retrieval of their values. These implicit methods
can be explicitly overridden to introduce finer-grained
controls (such as a check for 'negative age') at any stage in
the application's development, even after other code has
already been written against the implicit methods. This
'implicit by default' approach is a significant improvement
over the explicitness of JavaBeans because in general finer-
grained controls will be the exception, not the rule.

Whether properties are specified using JavaBeans, Groovy,
or some other mechanism, the important point is both the
name and type are concretely specified by the properties
subsystem. It is duplication to restate them anywhere else.

B. Persistence Subsystem
Most business systems persist their data to long-term
storage, such as a database. To continue the Person example
from the previous section, the developer may define the
following SQL [25] schema to store a Person:
TABLE person (

name varchar(30) NOT NULL,
age int NOT NULL

);

The persistence subsystem contains new information
compared to the properties subsystem. Strings in Java are
immutable, so do not have any concept of 'maximum length'.
They are also implicitly nullable [26]. Conversely, from the
SQL schema it can be seen that 'name' is actually limited to
30 characters and is not-nullable (i.e. is a required field).
Clearly, the properties subsystem alone is not sufficient to
fully describe the business model.

However, there is also duplication. The names and types of
each property have already been defined by the properties
subsystem. It would not lead to a functioning system if the
persistence subsystem was inconsistent. An ideal solution
would be to eliminate the duplicated information whilst
retaining the new information. Such a solution is provided
by Object Relational Mappers (ORM) – a notable one being
Hibernate [27]. Hibernate allows the developer to specify
mapping files to map properties to database schemas. These
mapping files include the new information:
<hibernate-mapping>
 <class name=”Person”>
 <property name=”name” length=”30” not-null=”true”/>
 <property name=”age”/>
 </class>
</hibernate-mapping>

There is still duplication in that 'Person', 'name' and 'age' are
restated, but the duplication is at least able to be validated: if
there is inconsistency between the properties and the
mapping file, Hibernate will raise an error during application
startup. This is an important step in reducing the margin for
error, even if it doesn't reduce the duplication itself.

A next generation ORM is the Java Persistence Architecture
(JPA) standard [28]. JPA achieves the goal of removing
duplication entirely, whilst at the same time preserving the
new information, by using metadata annotations [26] on the
properties:
public class Person {

...
@Column(length=30,nullable=false)
public String getName() {

return mName;
}

The important point is that persistence subsystems have
evolved from SQL, through iterative generations of ORMs,
to standardization - with a specific goal of removing
duplication. A similar evolution and standardization for UIs
would be highly beneficial. It might be thought of as Object
Interface Mapping (OIM).

C. Validation Subsystem
Persistence subsystems generally fail poorly when presented
with invalid data, returning error messages that are not
suitable for end-user consumption. Therefore it is desirable
to pre-validate the data and, if necessary, return more
meaningful messages. Early validation subsystems, such as
the Apache Commons Validator [30], use XML files to
specify validation rules:
<form name="person">
 <field property="age" depends="intRange">
 <var>
 <var-name>min</var-name><var-value>0</var-value>
 <var-name>max</var-name><var-value>150</var-value>
 </var>
 </field>
</form>

As with the Hibernate mapping file in the previous section, it
is evident these validation files contain both duplication
('age') and new information (minimum and maximum
values). Again, it is desirable to remove the duplication
whilst retaining the new information.

Next generation validation subsystems such as Hibernate
Validator [30] achieve this, again using metadata annotations
on the properties:

public class Person {
...
@Min(0) @Max(150)
public int getAge() {

return mAge;
}

Standardization efforts around future validation subsystems
are ongoing. They allow the developer to define
sophisticated scenarios including partial validation and
interrelated validation between properties [31]. For example,
two properties could be mutually exclusive. If such
properties were represented in a UI, filling in one may
disable the other.

D. XML Serialization Subsystem
If the UI is the user interface to an application, XML
messaging could be thought of as the machine interface.
From this perspective, it shares the same problem of
duplication. For example, a Web service request to load a
Person may return the following XML:
<person age=”35”>
 <name>John Doe</name>
</person>

The 'age' attribute and the 'name' element must be consistent
with those defined in the property, persistence and validation
subsystems, else those systems will fail.

Modern solutions eliminate this duplication whilst retaining
the extra information necessary to format the XML. For
example, the Java Architecture for XML Binding [32] uses
metadata annotations on the properties:
@XmlRootElement
public class Person {

public String getName() {
return mName;

}
@XmlAttribute
public int getAge() {

return mAge;
}

}

The 'Person' class has metadata that declares it as an XML
root element. The 'age' property has metadata that declares it
as an XML attribute. The 'name' property will be implicitly
treated as an XML element by default.

E. Internationalization Subsystem
In order to internationalize and localize an application, all
human-readable text is generally factored into an
internationalization subsystem. For example, the Java
platform defines ResourceBundles [33] of key/value pairs:

Resource-en-AU.properties Resources-it-IT.properties
name=Name name=Nome
age=Age age=Eta

Internationalization is seldom used during a prototyping
phase, but is an important subsystem once in production. It is
mentioned here as it is one of the subsystems referred to in
the next section.

F. Business Process Modelling Subsystem
In a similar vein to validation subsystems, BPM subsystems
externalize and formalize the business rules of an
application. For example, using JBoss jBPM [34] a
developer can specify the valid actions available when
editing a Person. Generally it is these actions, and only these
actions, that should be presented to the user in the UI:
<page name="editPerson">

<transition name="save" to="personSaved"/>
<transition name="delete" to="personDeleted"/>

</page>

The cumulative effect of the sample subsystems explored in
this section is a high level of duplication with the UI. We
demonstrate this in the next section.

IV. IMPACT OF DUPLICATION
To appreciate the cumulative effect of the sample
subsystems identified in the previous section, this section
explores constructing a hypothetical UI using a conventional
UI builder or modelling language and demonstrates how
much of that work is, in fact, duplication from other
subsystems.

Figure 1: Example UI with 5 fields

To construct the simple UI show in Figure 1, the developer
must first drag (in a UI builder) or declare (in a modelling
language) the labels for each of the 5 fields. The text on the
labels must be semantically consistent with those defined in
the properties subsystem. It would not lead to a functional
system if, for example, the UI labelled a field 'Notes' which
the property subsystem considered to be 'Name'. There may

be slight differences – such as using a different language or
more explanatory wording in the UI – but these would
generally be handled by the internationalization subsystem
as described in section 3E.

Second, the developer would choose appropriate UI widgets
for each field. There is some flexibility here, but only a little.
It would not lead to a functional system if, for example, a
date picker widget was used for the 'Age' field. Similarly, the
widget for the read-only 'Retired' field (which displays 'Yes'
or 'No' based on age and gender) can never be an input
widget. Whilst it is important to preserve the flexibility of
introducing higher level abstractions (for example, a UI may
choose to represent the 'Name' field as two fields 'Firstname'
and 'Surname') UIs are generally 'implicit by default' - rather
like the examples in sections 3A and 3D. Higher level
abstractions are the exception, not the norm, as our
interviews in the next section will demonstrate.

Third, the developer would apply constraints to each widget.
These constraints must match those imposed in the other
subsystems. The 'Name' textbox must be limited in the
maximum amount of text it accepts to the same length
declared in the persistence subsystem (this is different to its
visual length, which may be shorter than the maximum and
scroll as the user types). The 'Age' slider must have the same
minimum and maximum values as declared in the validation
subsystem. The 'Gender' dropdown must only contain valid
values as defined by, say, an enum [26].

Fourth, the developer would designate certain fields as
required fields, and label them appropriately. For example,
the 'Name' field is labelled with a star. These must
correspond with the persistence subsystem. It would not lead
to a functional system if the UI allowed a field to be optional
that the database considered not nullable.

Finally, the developer would choose appropriate command
buttons. These must correspond to the subsystem that
handles the action, and must be named consistently. It would
not lead to a functional system if, for example, the Save
button executed the Delete action. In addition, a subsystem
such as a BPM would already define whether a button is
applicable in a given context. For example, the Delete button
may not be considered valid when entering a new Person.

In total it can be seen there are over twenty 'points of
duplication' with other subsystems for only a simple UI
screen with 5 fields:

• Name: label, type, maximum length, required

• Age: label, type, minimum/maximum value

• Gender: label, type, enum values

• Retired: label, type, read-only

• Notes: label, type, large field (LOB)

• Save: label, action

• Delete: label, action

Scaled up to real world applications with hundreds of
screens and thousands of fields, such duplication goes from
being unnecessary to being a significant potential for
application errors. Worse is that these errors can rarely be
identified statically, such as at compile-time or during
application startup. The developer must rely on runtime
testing to expose them.

By exploring ways to remove duplication it is possible to not
only reduce such errors, but to create more robust UIs. This
is because developers may choose to simply omit the
duplication rather than risk it becoming inconsistent over
time. For example, a developer may not specify the
maximum text length on the 'Name' field in the UI at all, in
the hope the validation subsystem will catch any overflows.

Not all applications will use property, validation, persistence
and BPM subsystems. Some will use no equivalent
subsystem, some will use new types of subsystem. Wherever
a subsystem is used, however, the UI must be consistent with
it or, as this hypothetical example demonstrates, only defects
can result: there is no usefulness to the duplication.

V. PREVALENCE OF DUPLICATION
Having both explained and demonstrated the issue of
duplication in the UI layer, it remains to understand the
prevalence of this issue within mainstream software
development. The authors conducted 6 interviews with
senior software development practitioners from different
segments of industry – including finance, medical and
middleware, across the UK, the US and Australia.

The authors chose a standardized, open-ended format for the
interview [35]. This approach involves asking the same
standardized set of questions to each interviewee, but the set
is necessarily short because each question is framed broadly
so as to allow the candidates to talk openly about their
experiences. Standardized, open-ended interviews allow
accurate comparison and analysis of results, whilst avoiding
leading the interview and therefore minimizing bias. To
analyse the results, the authors employed a simplified
version of grounded theory [36]. This approach involves
coding, comparing and sorting categories that emerge from
the interview sessions. Of principal interest to this paper was
the category of duplication. Other categories that emerged
will be used in future work.

We began each interview by informing the practitioner we

wanted to talk about the mechanics, not the aesthetics, of
developing a UI and its relation to the rest of an application.
We asked each practitioner to describe the process they
would go through to add, say, a Date of Birth field to an
existing Person business object in their current software
system, including both the back end and front end. This
initial question was deliberately phrased to be as open-ended
as possible. Specifically, it avoids the bias of mentioning
duplication. However, because we didn't explicitly prompt
duplication, it was important to have each practitioner talk
not just about the UI but all steps of the process, from back
end to front end. In this way, the duplication would become
apparent of its own accord.

All the practitioners gave answers similar to the example in
section 3. One enumerated “first off we would add [the Date
of Birth field] to the database, in the table. We'd then add it
to the stored procedures going up. Add it into the Data
Access Layer for the purposes of getting it out of the
recordset. And then you'd add the property into the business
level, the business layer. And then, on the UI, on the front-
end, we'd have to add the field in the HTML”. Another
practitioner said “I would go to the persistence level, I'd
work out how that field should be modelled in the problem
domain. For date of birth, you'd have a date column. I'd look
at the Person class, work out its relationship with the Person
schema. Work out its name, what its type would be, date or
datetime depending on the database. Then I'd work out how I
should change the Person class - they'd probably just be a
getter and setter - and then I'd tie it back to the persistence
layer, map it back to the table. For validation constraints,
yeah, this is always a problem, you need to validate it both in
the UI and at the persistence layer if that's a business rule, so
it's always a problem. In terms of the UI, I'd go and find the
bit of UI code and work out the position where this field
should be added”.

It was noted those practitioners using newer technologies
had considerably fewer steps. One said “we would obviously
add that field to the actual business object that [JPA] maps to
the database, that's already there. And then any validation
constraints that are around that - we use Hibernate Validator
so we'd put the validation constraints on the entity, we don't
have to do anything more for validation other than that, and
all that's left now is dropping the field on to the GUI, and
that should be it really. Using the IDE we have we'd drag
and drop GUI components, then we'd have to apply some
kind of formatting as well, some formatting to the
underlying XHTML”. However we observed this sub-
category [36] of reducing steps was generally from the
business objects 'down' through to the persistence layer,
removing the manual coding of schemas, stored procedures
and recordsets, not 'up' to the UI layer.

The authors then summarised the steps back to the
practitioner and asked whether they thought any steps were
deficient. Not all the practitioners were immediately aware
of any problem. This is to be expected for such an
entrenched issue: some interviewees simply don't know any
different. One said “what we have now is pretty good,
certainly compared to a Java Server Pages (JSP) or
something like that. 2 steps to add a field is pretty good. The
framework handles quite a lot and we can develop much
faster than we normally do”. For those practitioners the
authors used a further probe question [35], which
specifically raised awareness of restating information: the
authors asked whether any steps seemed redundant, or
contained duplicated information from previous steps. Such
a question has inherent bias, so it was not asked unless the
practitioner failed to identify duplication naturally.

Following the probe question, all interviewees converged on
recognising duplication amongst the steps. “The problem
definitely exists. It's more from the business layer forward to
the screen is the biggest problem because there are things out
there like Hibernate [27] which do from, sort of, business
layer down”. Another echoed this sentiment “the drudgery at
the moment is adding the UI code, and adding the validation
and giving that feedback. That's really quite unpleasant. It's
the most complex of all the steps, actually, depending on the
magnitude of the change. Given a very simple change, just
adding a single field, the bulk of the work, the bulk of the
drudgery, in the coding is at the UI level. Being able to more
concisely express the relationship between the UI and the
model and the change I want to make in one place, or at
most two places, in a very concise fashion would help”.
Another warned “it's a fairly established software
engineering principle that the more you have to repeat
something the higher the error is, the higher the chances
there's going to be an error in the code”.

Following on from this, the authors asked each practitioner
whether they had ever encountered defects that were a result
of this recognised deficiency in their process. All of the
interviewees responded that such defects were common.
“Definitely. There's always a chance that someone's going to
get a bug somewhere along the line, especially with Date of
Birth - as it goes down the date gets mixed up because
someone's used the incorrect data type. With some of our
junior developers we have here that's quite a common thing
where they get a bit muddled up... it's definitely an issue that
should be far simpler”. Another agreed “All the time. That
would be me overlooking various aspects of the user
feedback loop, in the validation, me forgetting to persist
various fields that I've added, so the validation happens but
then it never persisted, so having to tie the new field to the
model, with validation, in multiple places, gives a number of

points where I could fail to do that”. Another said, of
reviewing other developer's code, “a large percentage of
mistakes were always they'd copy and pasted and they'd
changed that one, that one, and that one, but not that one. So
it creates a higher chance of there being a minor error”.

Several practitioners echoed this difficulty of identifying
duplication related defects, because they generally evade
static checking and developers must rely on runtime testing
to detect them. One financial software practitioner explained
“we've got a BigDecimal [26], and [the back end has] set the
scale to 8 but the GUI puts through 10, it [gets silently
rounded and] passes all the way through. That becomes a
real issue because it's really hard to find. That's caused us
huge problems before”. Another agreed “it's the biggest
problem I personally face. These sorts of errors. You're
updating, say, you change the type of a field and you try
updating it with, say, a datetime object but you've actually
now changed it to an integer field, you don't realise until you
actually start testing the application, or if you miss it in
testing and send it out to customers, you don't realise that
there's a problem until you get the bug reports - not ideal”.

One practitioner described how, because duplication is
generally not understood by refactoring tools, it works
against his preferred methodology of aggressive refactoring:
“if you change a field name, and I do like to change field
names - I don't know why - so I'll decide after a year of
using the program 'what's that field name doing there?' I did
it the other day: I've got a stock control module in the
program and there's [a field] called 'stock reorder level
reminder' and I thought 'what a stupid name for a field', so I
just changed it to 'reorder level' because that's much easier.
Now, generally changing that could have massive
implications couldn't it? You could change that and it could
break the application in several parts”.

Finally, the authors asked each practitioner whether the
themes explored in the interview were commonplace across
all software systems they had developed. One said “I've built
a number of UIs over the course of my career, some of them
have been desktop applications, some of them have been
web applications, and I think this is a general problem. For
desktop applications it's hard but it's relatively easy. For web
I think it becomes a lot more difficult because the
technologies involved are a lot more fiddly, there are a lot
more moving parts in web application UIs. But yes I think
it's a general problem.”. Another said “quite honestly laying
out UI forms is time consuming, it's fairly standard how a UI
is - it shouldn't be a problem to say, okay, you have these
things you probably want to interface in a particular way,
here's what we suggest - we being the computer - you've got
a datetime here, here's the calendar control we suggest. Oh

you don't want a calendar, you want to use a textbox, go for
it. Something along those lines would definitely detract from
the tedium of putting together the UI, which is an important
step and everything but is a really repetitive process. If it's a
varchar in the database, it's going to manifest as some form
of a textbox on the form. If I've got a foreign key in my
database, it's going to manifest as some form of listbox,
dropdown, radio button, checkbox. It's not a huge leap”. One
practitioner summarised it as “every developer who writes
anything more than a Hello World application will have this
problem. Most developers who strive to make their work
better, who aren't lazy, do sense this problem, do encounter
this problem on a daily basis as a constant friction”.

We observed a sub-category [36] that this friction had driven
several practitioners to fashion their own ad hoc solutions by
combining existing tools. “For a brand new screen we're
currently using CodeSmith [37], so if you design the
database table you can hit generate and it'll go through and
generate everything right up to the screen”. However,
because of subsequent editing of the generated code, they
found CodeSmith to be of limited use outside of new
screens: “if you could do the same thing where you could
add a new field to the database and it generated and added it
into the [existing] code for you as it goes up that'd be
excellent”. Other solutions had similar shortcomings.
Microsoft LinQ [37] helped with the persistence layer, but
“if I go in and create a field, LinQ creates a nullable version
of that field, where the [UI] control I'm binding it to is
expecting a non-nullable version. That's caused a number of
problems. That's come up a number of times and you've
really got to kind of juggle to make it work right. Keep in
mind when that could happen and keep track of the potential
for it to happen”. Asked why they had invested the
considerable resources to fashion their own solutions: “I do
genuinely believe that kind of thing makes the development
cycle better in the long run. It makes things much cleaner,
there's less coding to go on. If I were to have to write, well,
in my application the basic objects I have, I have patients,
contacts, appointments, items, invoice, payments, refunds,
credits and then a load of secondary objects like appointment
status', patient categories, all of these are objects. If I had to
code a separate form for each one it's just tedious. Interface
work is not that much fun. It's quite tedious, dropping
controls on a form, lining them up with the other controls
and fiddling around for ages”. Another practitioner echoed
this sentiment saying, if such tedium could be reduced,
“you'd have more time for the actual problem solving:
defining, clarifying, implementing the problem rather than
the mechanics of the 'auto pilot' of gotta code up this
method, gotta code this, gotta code that. Give you more time
to concentrate on the more energy-requiring things rather
than the monotonous reproducing of stuff. Because, I mean,

despite the fact they tell everyone not to, normally you end
up copying and pasting things”.

The results of our interviews suggest UI duplication is a
prevalent and serious problem in software development. We
observed developers across industry segments and across
software platforms, and saw they had common experiences
of duplication, common experiences of bugs caused by it,
and a common desire for it to be addressed.

VI. CONCLUSION
We have identified a pattern of duplication in the UI layer of
software applications. We have explored a sample of
underlying subsystems in use by enterprise applications
today and demonstrated duplication between those
subsystems. In a number of cases we have shown how these
subsystems have evolved to eliminate their duplication, but
that the UI layer has not attempted such elimination. Finally,
we have surveyed the prevalence of this issue within
mainstream software development.

The authors are building an Open Source prototype to
explore possible solutions to this duplication [39]. The
prototype leverages the emerging field of software mining to
allow the UI to inspect existing, heterogeneous subsystems
rather than impose its own architectural methodology [18].
Preliminary results have been encouraging, and the authors
have begun empirically evaluating the prototype by taking
existing applications, enumerating the points of duplication
in their UI layer (in the same way as in section 4),
refactoring them to incorporate the prototype and then re-
evaluating how many points of duplication have been
removed. These evaluations, as well as the prototype itself,
can be downloaded from http://metawidget.org.

Immediate future work will concentrate on evaluating the
prototype against real world business systems, to assess the
degree to which it can reduce UI duplication. A longer term
goal will be to standardize such mechanisms, such that they
can be adopted as part of mainstream UI development.

REFERENCES
[1] Krasner, G.E. & Pope, S.T. A description of the model-view-

controller user interface paradigm in the smalltalk-80 system. Journal
of Object Oriented Programming (1988), vol. 1, no. 3, pp. 26-49.

[2] Edmonds, E. The Emergence of the Separable User Interface. The
Separable User Interface. Academic Press (1992), 5-18.

[3] Dijkstra, E.W. On the role of scientific thought. Selected writings on
Computing: A Personal Perspective (1982), 60–66.

[4] Newman W.A. & Edmonds, E. The Separable User Interface.
Academic Press (1992), 349-355.

[5] Stevens W., Myers G. & Constantine L. Structured Design. IBM
Systems Journal 13, 2 (1974), 115-139.

[6] Edmonds, E. The man–computer interface: a note on concepts and
design. International Journal of Man-Machine Studies (1982), vol. 16,
231-236.

[7] Green, M. A methodology for the specification of graphics user
interface. Computer Graphics 15 (1981), 99-109.

[8] Szekely, P.A. Separating the user interface from the functionality of
application programs. PhD Thesis (1988).

[9] Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan,
D. & Florins, M. USIXML: a User Interface Description Language for
Specifying Multimodal User Interfaces, W3C Workshop on
Multimodal Interaction (2004), 19-20.

[10] Xudong, L. & Jiancheng, W. User Interface Design Model. Software
Engineering, Artificial Intelligence, Networking, and Parallel
Computing (2007).

[11] Gajos, K. & Weld, D.S. SUPPLE: automatically generating user
interfaces, Proceedings of the 9th international conference on
Intelligent user interface (2004), 93-100.

[12] Menkhaus, G. & Pree, W. A hybrid approach to adaptive user
interface generation, Proceedings of the 24th International Conference
on Information Technology Interfaces (2002), 185-190.

[13] Jelinek, J. & Slavik, P. GUI generation from annotated source code.
Proceedings of the 3rd annual conference on Task Models and
diagrams (2004), 129-136.

[14] Hunt, A. & Thomas, D. The Evils of Duplication. The Pragmatic
Programmer. Addison-Wesley (1999), 26-33.

[15] Myers, B., Hudson, S.E. & Pausch, R. Past, present, and future of user
interface software tools. ACM Transactions on Computer-Human
Interaction, vol. 7, no. 1 (2000), 3-28.

[16] Manheimer, J.M., Burnett, R.C. & Wallers, J.A. A case study of user
interface management system development and application.
Proceedings of the SIGCHI conference on Human factors in
computing systems: Wings for the mind (1989), 127-132.

[17] Prat, A., Lores, J., Fletcher, P. & Catot, J.M. Back-End Manager: An
Interface between a Knowledge-based Front End and its Application
Subsystems. Knowledge-Based Systems (1990) vol. 3, no. 4.

[18] Pawson, R. Naked objects. PhD thesis, University of Dublin, Trinity
College (2004), 9.

[19] Firesmith, D.G. Use Cases: The Pros and Cons. Wisdom of the Gurus:
A Vision for Object Technology (1996).

[20] Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D. and Mc Kee,
B. Externalizing Business Rules from Enterprise Applications: An
Experience Report. Practitioner Reports in OOPSLA (1999), vol. 99.

[21] TIOBE Programming Community Index. http://tiobe.com
[22] JavaBeans. http://java.sun.com/javase/technologies/desktop/javabeans
[23] Coward, D. What's coming in Java SE 7 (2006).

http://java.cz/dwn/1003/2664_Java7Overview_Prague_JUG.pdf
[24] Groovy Beans. http://groovy.codehaus.org.
[25] ISO 9075, Information Processing Systems. SQL (1987).
[26] Gosling, J. The Java Language Specification. Addison-Wesley (2005).
[27] Hibernate. http://hibernate.org.
[28] JPA. http://jcp.org/en/jsr/detail?id=220.
[29] Commons Validator. http://commons.apache.org
[30] Hibernate Validator. http://validator.hibernate.org.
[31] Bean Validation. http://jcp.org/en/jsr/detail?id=303.
[32] Java Architecture for XML Binding. https://jaxb.dev.java.net
[33] Java ResourceBundles.

http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles.
[34] JBoss jBPM. http://jboss.com/products/jbpm.
[35] Valenzuela, D. & Shrivastava, P. Interview as a Method for

Qualitative Research (2002).
http://public.asu.edu/~kroel/www500/Interview%20Fri.pdf.

[36] Dick, B. Grounded theory: a thumbnail sketch (2005).
http://scu.edu.au/schools/gcm/ar/arp/grounded.html.

[37] CodeSmith. http://codesmithtools.com.
[38] Microsoft LINQ. http://programminglinq.com.
[39] Kennard, R. & Steele, R. Application of Software Mining to

Automatic User Interface Generation. 7th International Conference on
Software Methodolgies, Tools and Techniques (2008)

